Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Direct ; 19(1): 22, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486336

RESUMO

BACKGROUND: Neutral/alkaline invertases (N/AINVs) play a crucial role in plant growth, development, and stress response, by irreversibly hydrolyzing sucrose into glucose and fructose. However, research on cotton in this area is limited. This study aims to investigate GhN/AINV23, a neutral/alkaline invertase in cotton, including its characteristics and biological functions. RESULTS: In our study, we analyzed the sequence information, three-dimensional (3D) model, phylogenetic tree, and cis-elements of GhN/AINV23. The localization of GhN/AINV23 was determined to be in the cytoplasm and cell membrane. Quantitative real-time polymerase chain reaction (qRT-PCR) results showed that GhN/AINV23 expression was induced by abscisic acid (ABA), exogenous sucrose and low exogenous glucose, and inhibited by high exogenous glucose. In Arabidopsis, overexpression of GhN/AINV23 promoted vegetative phase change, root development, and drought tolerance. Additionally, the virus-induced gene silencing (VIGS) assay indicated that the inhibition of GhN/AINV23 expression made cotton more susceptible to drought stress, suggesting that GhN/AINV23 positively regulates plant drought tolerance. CONCLUSION: Our research indicates that GhN/AINV23 plays a significant role in plant vegetative phase change, root development, and drought response. These findings provide a valuable foundation for utilizing GhN/AINV23 to improve cotton yield.


Assuntos
Resistência à Seca , Secas , Filogenia , Glucose , Sacarose
2.
Vaccine ; 41(41): 5951-5956, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37666697

RESUMO

Interference with the normal synthesis of LPS was shown to enhance immune responses to conserved outer membrane proteins. In the present study, we have constructed three vaccine candidates by deleting four genes (rfaL, rfbB, rffG and wzy) associated with LPS synthesis in the wild-type strain UK-1. Virulence assessment showed that after oral immunization of BALB/c mice, all mutant strains were attenuated and had significantly reduced ability to colonize host tissues compared to the wild-type strain. In addition, all three vaccine candidates induced elevated humoral, mucosal and cellular immune responses against S. Typhimurium and S. Choleraesuis OMPs compared to the PBS-treated group. Finally, immunization of mice with the rSC0136 vaccine candidate strain provided 100 % and 40 % protection against S. Typhimurium and S. Choleraesuis challenge, respectively. These results suggest that the deletion of LPS synthesis-related genes may be an effective strategy against homologous serotypes, but provides only partial protection against heterologous serotypes.


Assuntos
Salmonella enterica , Salmonella typhimurium , Animais , Camundongos , Salmonella typhimurium/genética , Vacinas Atenuadas , Lipopolissacarídeos , Camundongos Endogâmicos BALB C
3.
BMC Vet Res ; 19(1): 128, 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598169

RESUMO

BACKGROUND: Bacterial surface proteins play key roles in pathogenicity and often contribute to microbial adhesion and invasion. Pasteurella lipoprotein E (PlpE), a Pasteurella multocida (P. multocida) surface protein, has recently been identified as a potential vaccine candidate. Live attenuated Salmonella strains have a number of potential advantages as vaccine vectors, including immunization with live vector can mimic natural infections by organisms, lead to the induction of mucosal, humoral, and cellular immune responses. In this study, a previously constructed recombinant attenuated Salmonella Choleraesuis (S. Choleraesuis) vector rSC0016 was used to synthesize and secrete the surface protein PlpE of P. multocida to form the vaccine candidate rSC0016(pS-PlpE). Subsequently, the immunogenicity of S. Choleraesuis rSC0016(pS-PlpE) as an oral vaccine to induce protective immunity against P. multocida in mice was evaluated. RESULTS: After immunization, the recombinant attenuated S. Choleraesuis vector can efficiently delivered P. multocida PlpE protein in vivo and induced a specific immune response against this heterologous antigen in mice. In addition, compared with the inactivated vaccine, empty vector (rSC0016(pYA3493)) and PBS immunized groups, the rSC0016(pS-PlpE) vaccine candidate group induced higher antigen-specific mucosal, humoral and mixed Th1/Th2 cellular immune responses. After intraperitoneal challenge, the rSC0016(pS-PlpE) immunized group had a markedly enhanced survival rate (80%), a better protection efficiency than 60% of the inactivated vaccine group, and significantly reduced tissue damage. CONCLUSIONS: In conclusion, our study found that the rSC0016(pS-PlpE) vaccine candidate provided good protection against challenge with wild-type P. multocida serotype A in a mouse infection model, and may potentially be considered for use as a universal vaccine against multiple serotypes of P. multocida in livestock, including pigs.


Assuntos
Pasteurella multocida , Salmonella enterica , Doenças dos Suínos , Animais , Camundongos , Suínos , Pasteurella , Sorogrupo , Proteínas de Bactérias/genética , Modelos Animais de Doenças , Lipoproteínas , Proteínas de Membrana , Fatores de Transcrição , Vacinas de Produtos Inativados
4.
Physiol Plant ; 175(4): e13982, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37616007

RESUMO

The sugar transporter protein (STP) family has been shown to play important roles in plant growth, development, and stress response. However, it has not been studied in cotton compared to other major crops. In this study, we identified 90 STP genes from four cotton species, performed bioinformatic analysis, and focused on the role of GhSTP18 in salt stress. According to our results, cotton STP proteins were divided into four subgroups according to the phylogenetic tree. A synteny analysis suggested that whole-genome duplication (WGD) and segmental duplication were key drivers in the expansion of the STP gene family. The transcriptomic data analysis showed that 29 GhSTP genes exhibited sink-specific expression. Quantitative real time-polymerase chain reaction (qRT-PCR) analyses revealed that expression of GhSTP18 was induced by salt treatment, heat treatment, cold treatment, and drought treatment, and continuously increased during a salt stress time course. Notably, GhSTP18 encodes a plasma membrane-localized galactose transporter. Suppression of GhSTP18 transcription by a virus-induced gene silencing (VIGS) assay reduced sensitivity to salt stress in cotton, indicating that GhSTP18 negatively regulates plant salt tolerance. These results provide an important reference and resource for further studying and deploying STP genes for cotton improvement.


Assuntos
Proteínas de Plantas , Estresse Fisiológico , Filogenia , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Salino/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Açúcares , Gossypium/genética , Gossypium/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Front Immunol ; 14: 1152017, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37081875

RESUMO

Salmonella is an important zoonotic bacterial species and hazardous for the health of human beings and livestock globally. Depending on the host, Salmonella can cause diseases ranging from gastroenteritis to life-threatening systemic infection. In this review, we discuss the effector proteins used by Salmonella to evade or manipulate four different levels of host immune defenses: commensal flora, intestinal epithelial-mucosal barrier, innate and adaptive immunity. At present, Salmonella has evolved a variety of strategies against host defense mechanisms, among which various effector proteins delivered by the secretory systems play a key role. During its passage through the digestive system, Salmonella has to face the intact intestinal epithelial barrier as well as competition with commensal flora. After invasion of host cells, Salmonella manipulates inflammatory pathways, ubiquitination and autophagy processes with the help of effector proteins. Finally, Salmonella evades the adaptive immune system by interfering the migration of dendritic cells and interacting with T and B lymphocytes. In conclusion, Salmonella can manipulate multiple aspects of host defense to promote its replication in the host.


Assuntos
Infecções por Salmonella , Vacinas , Humanos , Salmonella , Intestinos , Mucosa Intestinal
6.
Front Plant Sci ; 13: 1035801, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466262

RESUMO

The natural environment of plants comprises a complex set of biotic and abiotic stresses, and plant responses to these stresses are complex as well. Plant proteomics approaches have significantly revealed dynamic changes in plant proteome responses to stress and developmental processes. Thus, we reviewed the recent advances in cotton proteomics research under changing environmental conditions, considering the progress and challenging factors. Finally, we highlight how single-cell proteomics is revolutionizing plant research at the proteomics level. We envision that future cotton proteomics research at the single-cell level will provide a more complete understanding of cotton's response to stresses.

7.
Microbiol Spectr ; 10(6): e0236122, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36377878

RESUMO

Mycoplasma hyopneumoniae (M. hyopneumoniae, Mhp) is the etiological agent of swine enzootic pneumonia (EP), which has been associated with considerable economic losses due to reduced daily weight gain and feed efficiency. Adhesion to the cilia is important for Mhp to colonize the respiratory epithelium. Therefore, a successful vaccine must induce broad Mhp-specific immune responses at the mucosal surface. Recombinant attenuated Salmonella strains are believed to act as powerful live vaccine vectors that are able to elicit mucosal immune responses against various pathogens. To develop efficacious and inexpensive vaccines against Mhp, the immune responses and protection induced by recombinant attenuated Salmonella vaccines based on the P42 and P97 antigens of Mhp were evaluated. In general, the oral inoculation of recombinant rSC0016(pS-P42) or rSC0016(pS-P97) resulted in strong mucosal immunity, cell-mediated immunity, and humoral immunity, which was a mixed Th1/Th2-type response. In addition, the levels of specific IL-4 and IFN-γ in the immunized mice were increased, and the proliferation of lymphocytes was also enhanced, confirming the production of a good cellular immune response. Finally, both vaccine candidate strains were able to improve the weight loss of mice after a challenge and reduce clinical symptoms, lung pathological damage, and the inflammatory cell infiltration. These results suggest that the delivery of protective antigens with recombinant attenuated Salmonella vectors may be an effective means by which to combat Mhp infection. IMPORTANCE Mhp is the main pathogen of porcine enzootic pneumonia, a highly infectious and economically significant respiratory disease that affects pigs of all ages. As the target tissue of Mhp infections are the mucosal sites of the respiratory tract, the induction of protective immunity at the mucosal tissues is the most efficient strategy by which to block disease transmission. Because the stimulation of mucosal immune responses is efficient, Salmonella-vector oral vaccines are expected to be especially useful against mucosal-invading pathogens. In this study, we expressed the immunogenic proteins of P42 and P97 with the attenuated Salmonella Choleraesuis vector rSC0016, thereby generating a low-cost and more effective vaccine candidate against Mhp by inducing significant mucosal, humoral and cellular immunity. Furthermore, rSC0016(pS-P42) effectively prevents Mhp-induced weight loss and the pulmonary inflammation of mice. Because of the effectiveness of rSC0016(pS-P42) against Mhp infection in mice, this novel vaccine candidate strain shows great potential for its use in the pig breeding industry.


Assuntos
Mycoplasma hyopneumoniae , Pneumonia Suína Micoplasmática , Salmonella enterica , Animais , Camundongos , Suínos , Mycoplasma hyopneumoniae/genética , Vacinas Bacterianas/genética , Imunização/métodos , Vacinas Sintéticas/genética , Salmonella/genética , Pneumonia Suína Micoplasmática/prevenção & controle , Imunidade nas Mucosas
8.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077339

RESUMO

Block of proliferation 1 (BOP1) is a key protein that helps in the maturation of ribosomes and promotes the progression of the cell cycle. However, its role in the leaf morphogenesis of cotton remains unknown. Herein, we report and study the function of GhBOP1 isolated from Gossypium hirsutum. The sequence alignment revealed that BOP1 protein was highly conserved among different species. The yeast two-hybrid experiments, bimolecular fluorescence complementation, and luciferase complementation techniques revealed that GhBOP1 interact with GhPES and GhWDR12. Subcellular localization experiments revealed that GhBOP1, GhPES and GhWDR12 were localized at the nucleolus. Suppression of GhBOP1 transcripts resulted in the uneven bending of leaf margins and the presence of young wrinkled leaves by virus-induced gene silencing assay. Abnormal palisade arrangements and the presence of large upper epidermal cells were observed in the paraffin sections of the wrinkled leaves. Meanwhile, a jasmonic acid-related gene, GhOPR3, expression was increased. In addition, a negative effect was exerted on the cell cycle and the downregulation of the auxin-related genes was also observed. These results suggest that GhBOP1 plays a critical role in the development of wrinkled cotton leaves, and the process is potentially modulated through phytohormone signaling.


Assuntos
Gossypium , Folhas de Planta , Regulação da Expressão Gênica de Plantas , Gossypium/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
J Plant Physiol ; 275: 153757, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35777126

RESUMO

The AP1/FUL transcription factors are important for floral development, but the underlying molecular mechanisms remain unclear. In this study, we cloned and identified two AP1/FUL-like genes, GhAP1.1 and GhFUL2, in upland cotton, which is a commonly cultivated economically valuable crop. Sequence alignment and phylogenetic analysis indicated that GhAP1.1 and GhFUL2, which are encoded by genes in the AP1/FUL clade, have conserved N-terminal regions but diverse C-terminal domains. Quantitative real-time PCR analysis revealed that GhAP1.1 and GhFUL2 were expressed in the flower and root, and showed opposite expression patterns during shoot apical meristem development. The upregulated expression of GhAP1.1 in Arabidopsis did not result in significant changes to the flowering time or floral organ development, and the transcript levels of the florigen FT increased and those of LFY decreased. Overexpression of GhFUL2 in Arabidopsis delayed flowering and promoted bolting by decreasing FT and LFY transcript levels. Silencing GhFUL2 in cotton dramatically increased the expression of GhFT and GhAP1.3 and promoted flowering. Yeast two-hybrid and bimolecular fluorescence complementation assays indicated that GhAP1.1 could interact with the SVP homolog GhSVP2.2, whereas GhFUL2 formed heterodimers with GhSEP3/GhSEP4 homologs and GhSVP2.2. The present results demonstrated that the functional divergence of GhAP1.1 and GhFUL2, which involved changes in sequences and expression patterns, influenced the regulation of cotton flower development.


Assuntos
Arabidopsis , Gossypium , Arabidopsis/genética , Arabidopsis/metabolismo , Flores , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Gossypium/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
J Adv Res ; 42: 55-67, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35738523

RESUMO

INTRODUCTION: Cotton is a vital industrial crop that is gradually shifting to planting in arid areas. However, tubby-like proteins (TULPs) involved in plant response to various stresses are rarely reported in cotton. The present study exhibited that GhTULP30 transcription in cotton was induced by drought stress. OBJECTIVE: The present study demonstrated the improvement of plant tolerance to drought stress by GhTULP30 through regulation of stomatal movement. METHODS: GhTULP30 response to drought and salt stress was preliminarily confirmed by qRT-PCR and yeast stress experiments. Ectopic expression in Arabidopsis and endogenous gene silencing in cotton were used to determine stomatal movement. Yeast two-hybrid and spilt-luciferase were used to screen the interacting proteins. RESULTS: Ectopic expression of GhTULP30 in yeast markedly improved yeast cell tolerance to salt and drought. Overexpression of GhTULP30 made Arabidopsis seeds more resistant to drought and salt stress during seed germination and increased the stomata closing speed of the plant under drought stress conditions. Silencing of GhTULP30 in cotton by virus-induced gene silencing (VIGS) technology slowed down the closure speed of stomata under drought stress and decreased the length and width of the stomata. The trypan blue and diaminobenzidine staining exhibited the severity of leaf cell necrosis of GhTULP30-silenced plants. Additionally, the contents of proline, malondialdehyde, and catalase of GhTULP30-silenced plants exhibited significant variations, with obvious leaf wilting. Protein interaction experiments exhibited the interaction of GhTULP30 with GhSKP1B and GhXERICO. CONCLUSION: GhTULP30 participates in plant response to drought stress. The present study provides a reference and direction for further exploration of TULP functions in cotton plants.


Assuntos
Arabidopsis , Secas , Arabidopsis/genética , Gossypium/genética , Gossypium/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
11.
Plant Biotechnol J ; 20(10): 1940-1955, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35718938

RESUMO

Interspecific breeding in cotton takes advantage of genetic recombination among desirable genes from different parental lines. However, the expression new alleles (ENAs) from crossovers within genic regions and their significance in fibre length (FL) improvement are currently not understood. Here, we generated resequencing genomes of 191 interspecific backcross inbred lines derived from CRI36 (Gossypium hirsutum) × Hai7124 (Gossypium barbadense) and 277 dynamic fibre transcriptomes to identify the ENAs and extremely expressed genes (eGenes) potentially influencing FL, and uncovered the dynamic regulatory network of fibre elongation. Of 35 420 eGenes in developing fibres, 10 366 ENAs were identified and preferentially distributed in chromosomes subtelomeric regions. In total, 1056-1255 ENAs showed transgressive expression in fibres at 5-15 dpa (days post-anthesis) of some BILs, 520 of which were located in FL-quantitative trait locus (QTLs) and GhFLA9 (recombination allele) was identified with a larger effect for FL than GhFLA9 of CRI36 allele. Using ENAs as a type of markers, we identified three novel FL-QTLs. Additionally, 456 extremely eGenes were identified that were preferentially distributed in recombination hotspots. Importantly, 34 of them were significantly associated with FL. Gene expression quantitative trait locus analysis identified 1286, 1089 and 1059 eGenes that were colocalized with the FL trait at 5, 10 and 15 dpa, respectively. Finally, we verified the Ghir_D10G011050 gene linked to fibre elongation by the CRISPR-cas9 system. This study provides the first glimpse into the occurrence, distribution and expression of the developing fibres genes (especially ENAs) in an introgression population, and their possible biological significance in FL.


Assuntos
Fibra de Algodão , Gossypium , Alelos , Gossypium/genética , Gossypium/metabolismo , Melhoramento Vegetal , Locos de Características Quantitativas/genética
12.
Front Plant Sci ; 12: 774161, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970288

RESUMO

The KNOX (KNOTTED1-like homeobox) transcription factors play an important role in leaf, shoot apical meristem and seed development and respond to biotic and abiotic stresses. In this study, we analyzed the diversity and evolutionary history of the KNOX gene family in the genome of tetraploid cotton (Gossypium hirsutum). Forty-four putative KNOX genes were identified. All KNOX genes from seven higher plant species were classified into KNOXI, KNOXII, and KNATM clades based on a phylogenetic analysis. Chromosomal localization and collinearity analysis suggested that whole-genome duplication and a polyploidization event contributed to the expansion of the cotton KNOX gene family. Analyses of expression profiles revealed that the GhKNOX genes likely responded to diverse stresses and were involved in cotton growth developmental processes. Silencing of GhKNOX2 enhanced the salt tolerance of cotton seedlings, whereas silencing of GhKNOX10 and GhKNOX14 reduced seedling tolerance to salt stress. Silencing of GhSTM3 influenced the cotton flowering time and plant development. These findings clarify the evolution of the cotton KNOX gene family and provide a foundation for future functional studies of KNOX proteins in cotton growth and development and response to abiotic stresses.

13.
Front Plant Sci ; 12: 728025, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659294

RESUMO

Phospholipase D (PLD) and its hydrolysis product phosphatidic acid play an important role in the regulation of several cellular processes, including root growth, pollen tube elongation, and microtubule reorganization. Here, we systematically identified and analyzed the membership, characterization, and evolutionary relationship of PLDs in five species of cotton. The results of the transcriptomic analysis suggested that the evaluated PLD genes showed high expression levels in anther tissue and during the fiber initiation and elongation periods. Quantitative real-time polymerase chain reaction showed differential expression of GhPLD genes in the anthers of photoperiod sensitive male sterility mutant 5 (psm5). Previous research on multiple stable quantitative trait loci also suggests the role of PLD genes in the fiber development. Further analyses showed that GhPLD2 protein is localized to the plasma membrane. The virus-induced gene silencing of GhPLD2 in cotton seedlings repressed its expression by 40-70%, which led to a reduction in reactive oxygen species (ROS) levels, 22% anther indehiscence, and disrupted fiber initiation and elongation. Thus, we inferred that GhPLD2 may promote ROS production, which, in turn, may regulate anther dehiscence and fiber development.

14.
Physiol Plant ; 173(4): 2091-2102, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34537974

RESUMO

Acid invertase (AINV) is a kind of sucrose hydrolase with an important role in plants. Currently, the AINV genes have not been systematically studied in cotton. In this study, a total of 92 AINV genes were identified in five cotton species. The phylogenetic analysis revealed that the AINV proteins were divided into two subgroups in cotton: vacuolar invertase (VINV) and cell wall invertase (CWINV). The analysis of gene structures, conserved motifs, and three-dimensional protein structures suggested that GhAINVs were significantly conserved. The synteny analysis showed that whole-genome duplication was the main force promoting the expansion of the AINV gene family. The cis-element, transcriptome, and quantitative real time-polymerase chain reaction (qRT-PCR) showed that some GhAINVs were possibly associated with stress response. GhCWINV4, highly expressed in PEG treatment, was cloned, and subsequent virus-induced gene silencing assay confirmed that this gene was involved in the drought stress response. Overall, this study might be helpful for further analyzing the biological function of AINVs and provide clues for improving the resistance of cotton to stress.


Assuntos
Gossypium , beta-Frutofuranosidase , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Gossypium/genética , Gossypium/metabolismo , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
15.
Plants (Basel) ; 10(6)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199872

RESUMO

Photosynthesis as a source is a significant contributor to the reproductive sink affecting cotton yield and fiber quality. Moreover, carbon assimilation from subtending leaves adds up a significant proportion to the reproductive sink. Therefore, this study aimed to address the source-sink relationship of boll subtending leaf with fiber quality and yield related traits in upland cotton. A core collection of 355 upland cotton accessions was subjected to subtending leaf removal treatment effects across 2 years. The analysis of variance suggested a significant effect range in the source-sink relationship under subtending leaf removal effects at different growth stages. Further insight into the variation was provided by the correlation analysis and principal component analysis. A significant positive correlation between different traits was observed and the multivariate analysis including hierarchical clustering and principal component analysis (PCA) categorised germplasm accessions into three groups on the basis of four subtending leaf removal treatment effects across 2 years. A set of genotypes with the lowest and highest treatment effects has been identified. Selected accessions and the outcome of the current study may provide a basis for a further study to explore the molecular mechanism of source-sink relationship of boll subtending leaf and utilization of breeding programs focused on cotton improvement.

16.
Genomics ; 113(1 Pt 2): 462-474, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33022357

RESUMO

Tubby-like protein genes (TULPs), present in the form of large multigene families, play important roles in environmental stress. However, little is known regarding the TULP family genes in cotton. In this study, we systematically identified and analyzed the membership, characterization, and evolutionary relationship of TULPs in four species of cotton. Transcriptome analysis indicated that GhTULPs participate in environmental stress and cotton tissue development. At the same time, we also predicted and analyzed the potential molecular regulatory mechanisms and functions of TULPs. GhTULP34, as a candidate gene, significantly reduced the germination rate of transgenic Arabidopsis plants under salt stress, and inhibited root development and stomatal closure under mannitol stress. The yeast two-hybrid and luciferase (LUC) systems showed that GhTULP34 can interact with GhSKP1A, a subunit of the SCF-type (Skp1-Cullin-1-F-box) complex. This study will provide a basis and reference for future research on their roles in stress tolerance.


Assuntos
Proteínas F-Box/metabolismo , Gossypium/genética , Pressão Osmótica , Proteínas de Plantas/metabolismo , Proteínas F-Box/genética , Gossypium/metabolismo , Proteínas de Plantas/genética , Ligação Proteica , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo
17.
Plant Physiol Biochem ; 158: 420-433, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33257231

RESUMO

The jumonji C (JMJ-C) domain-containing protein is a histone demethylase and is involved in plant stress. However, the function of the JMJ-C gene family in cotton is still not confirmed. Herein, 25, 26, 52, and 53 members belonging to the JMJ-C gene family were identified in Gossypium raimondii, Gossypium arboreum, Gossypium hirsutum, and Gossypium barbadense, respectively. Based on phylogenetic relationships and conserved domains, the JMJ-C genes were categorized into five subfamilies, KDM3, KDM4, KDM5, JMJC, and JMJD6. The chromosomal location, gene structure, motif compositions, and cis-elements have been displayed. The collinear investigation showed that whole-genome duplication event is the mainly power to drive JMJ-C gene family expansion. Transcriptome and qRT-PCR analysis revealed that eight GhJMJs were induced by salt and PEG treatment. Further assays confirmed that GhJMJ34/40 greatly improved salt and osmotic tolerance in Saccharomyces cerevisiae. These results help clarify JMJ-C protein functions in preparation for further study.


Assuntos
Gossypium/enzimologia , Histona Desmetilases/fisiologia , Proteínas de Plantas/fisiologia , Tolerância ao Sal , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Gossypium/genética , Histona Desmetilases/genética , Família Multigênica , Filogenia , Proteínas de Plantas/genética
18.
Genomics ; 113(1 Pt 1): 44-56, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33276005

RESUMO

Neutral/alkaline invertases (N/AINVs) are sucrose hydrolases with important roles in plants. In this study, 15, 15, 15, 29, and 30 N/AINVs were identified in the Gossypium species, G. raimondii, G. herbaceum, G. arboreum, G. hirsutum, and G. barbadense, respectively. Along with two previously discovered branches, α and ß, a new clade γ was first discovered in our study. Investigation of gene collinearity showed that whole-genome duplication (WGD) and polyploidization were responsible for the expansion of the N/AINV gene family in allopolyploid Gossypium. Moreover, expression patterns revealed that GhN/AINV3/13/17/23/24/28 from the ß clade is highly expressed during the period of fiber initiation. The invertase activity of GhN/AINV13 and GhN/AINV23 were confirmed by restoring defects of invertase-deficient yeast mutant SEY2102. Treatments of abiotic stress showed that most GhN/AINVs were induced in response to polyethylene glycol (PEG) or salt stress. A virus-induced gene-silencing (VIGS) experiment and yeast two-hybrid assay demonstrated that GhN/AINV13 may interact with their positive regulators Gh14-3-3 proteins and participate in the fiber initiation or stress tolerance of cotton. Our results provided fundamental information regarding N/AINVs and highlight their potential functions in cotton stress tolerance.


Assuntos
Gossypium/genética , Pressão Osmótica , Proteínas de Plantas/genética , Estresse Salino , beta-Frutofuranosidase/genética , Proteínas 14-3-3/metabolismo , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Gossypium/enzimologia , Gossypium/metabolismo , Proteínas de Plantas/metabolismo , beta-Frutofuranosidase/metabolismo
19.
Front Plant Sci ; 11: 575015, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193513

RESUMO

Thaumatin-like proteins (TLPs) present in the form of large multigene families play important roles in biotic stress and abiotic stress. However, there has been no systematic analysis of the TLPs in cotton. In this study, comprehensive identification and evolutionary analysis of TLPs in four species of cotton were conducted. In total, 50, 48, 91, and 90 homologous sequences were identified in Gossypium raimondii, G. arboreum, G. barbadense, and G. hirsutum, respectively. Gene structure, protein motifs, and gene expression were further investigated. Transcriptome and quantitative real-time PCR analysis indicated that GhTLPs participate in abiotic, biotic stress and cotton fiber development. GhTLP19 on chromosome At05 was selected as a candidate gene for further study. When GhTLP19 was silenced by virus-induced gene silencing (VIGS) in cotton, with the increase of malondialdehyde (MDA) content and the decrease of catalase (CAT) content, and as the increase of disease index (DI) and hyphae accumulation, the plants were more sensitive to drought and Verticillium dahliae. Furthermore, the GhTLP19 overexpressing Arabidopsis transgenic lines exhibited higher proline content, thicker and longer trichomes and more tolerance to drought when compared to wild type. This study will provide a basis and reference for future research on their roles in stress tolerance and fiber development.

20.
Int J Biol Macromol ; 163: 1087-1096, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679317

RESUMO

The EMBRYONIC FLOWER 2 (EMF2) gene encodes a VEFS (VRN2-EMF2-FIS2-Su(z)12) domain protein involved in plant growth and development. Herein, genome-wide characterization of the VEFS-box gene family in Gossypium raimondii, G. arboreum, G. barbadense, and G. hirsutum was performed with a total of 3, 3, 6, and 6 homologous sequences respectively identified in the four species. The gene structure, protein motifs, and gene expression were further investigated. Based on our previous research on multiple stable quantitative trait loci for early maturity, GhEMF2B on chromosome D03 was selected as a candidate gene for further study. Quantitative real-time PCR analysis indicated that GhEMF2B was upregulated in the apical buds of late-maturing cultivars at the fourth and fifth true-leaf stages compared to that of early-maturing cultivars. Virus-induced gene silencing of GhEMF2B in cotton seedlings repressed expression by 50%-70%, which led to earlier floral bud development, young curled leaves, and abnormal petal formation. Further analysis demonstrated that the silencing of GhEMF2B enhanced the expression levels of the positive floral regulators AGAMOUS-LIKE 6 (GhAGL6), FLOWERING LOCUS T (GhFT), and APETALA 1 (GhAP1). Thus, it can be inferred that GhEMF2B plays important roles in the floral transition and development of cotton.


Assuntos
Flores/genética , Gossypium/genética , Proteínas de Plantas/genética , Locos de Características Quantitativas/genética , Cromossomos de Plantas/genética , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Estudo de Associação Genômica Ampla/métodos , Filogenia , Plântula/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...